17104

13141

3 Hours / 100 Marks \square
Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.

Marks

1. Attempt any TEN of the following:
a) Find x if $\left|\begin{array}{ccc}0 & 7 & -2 \\ 11 & x & 10 \\ 4 & 8 & 1\end{array}\right|=0$
b) If $\quad A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right] \quad B=\left[\begin{array}{ll}3 & 7 \\ 1 & 9\end{array}\right] \quad$ Find $2 A+3 B$.
c) If $A=\left[\begin{array}{lll}2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2\end{array}\right]$ Find A^{2}.
d) If $A=\left[\begin{array}{ll}6 & 5 \\ 2 & 1\end{array}\right]$ Find Adj. A.
e) Resolve into partial fraction $\frac{2 x}{x^{2}+x-2}$
f) Prove that $\operatorname{cosec}^{2} \theta-\cos ^{2} \theta \cdot \operatorname{cosec}^{2} \theta=1$
g) If $\cos A=0.4$ Find the value of $\cos 3 \mathrm{~A}$.
h) If $\sin \theta=\frac{15}{17}$ where θ lies in II quardrant.

Find the value of $\tan \theta$.
i) If $\tan ^{-1}(1)+\tan ^{-1}(x)=0 \quad$ Find the value of x.
j) Find intercepts of a line $2 x+3 y=6$ an co-ordinates axes.
k) Find the acute angle between the lines whose slopes are $\sqrt{3}$ and $\frac{1}{\sqrt{3}}$.

1) Find
i) Range
ii) Co-efficient of range of the following data:

50, 90, 120, 40, 180, 200, 80.
2. Attempt any FOUR of the following: 16
a) Solve the following equations by using Cramer's rule.
$x+y+z-6=0,2 x+y-2 z+2=0, x+y-3 z+6=0$
b) If $\quad \mathrm{A}=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ccc}3 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]$
verify that $(A \cdot B)^{T}=B^{T} \cdot A^{T}$.
c) Find inverse of matrix by adjoint method.

If $A=\left[\begin{array}{ccc}2 & -1 & -3 \\ 3 & -4 & -2 \\ 5 & 2 & 4\end{array}\right]$
d) If I is unit matrix of order 3×3 and $A=\left[\begin{array}{ccc}1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5\end{array}\right]$

Find $A^{2}-3 A+I$.
e) Resolve into partial fraction: $\frac{x^{2}+1}{x^{3}+1}$.
f) Resolve into partial fraction.

$$
\frac{x^{2}-2 x+7}{(x+1)(x-1)^{2}}
$$

3. Attempt any FOUR of the following:
a) Prove that: $\sqrt{\frac{1-\cos \mathrm{A}}{1+\cos \mathrm{A}}}=\operatorname{cosec} \mathrm{A}-\cot \mathrm{A}$.
b) Prove that: $\frac{\sec 4 \mathrm{~A}-1}{\sec 2 \mathrm{~A}-1}=\frac{\tan 4 \mathrm{~A}}{\tan \mathrm{~A}}$.
c) Prove that:

$$
\frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=(\cos A-\sin A \cdot \tan 3 A) .
$$

d) Prove that: $\cos (\mathrm{A}+\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}$.
e) In $\triangle \mathrm{ABC}$ prove that:
$\cos \mathrm{A}+\cos \mathrm{B}-\cos \mathrm{C}=-1+4 \cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$
f) Show that: $\quad \cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{27}{11}\right)$.
4. Attempt any FOUR of the following:
a) Show that: $\frac{\sin \mathrm{A}}{1+\cos \mathrm{A}}+\frac{1+\cos \mathrm{A}}{\sin \mathrm{A}}=2 \operatorname{cosec} \mathrm{~A}$.
b) Prove that: $\frac{1-\tan 2 \theta \tan \theta}{1+\tan 2 \theta \tan \theta}=\frac{\cos 3 \theta}{\cos \theta}$.
c) Prove that: $\frac{\sin 7 x+\sin x}{\cos 5 x-\cos 3 x}=\sin 2 x-\cos 2 x \cot x$.
d) Prove that: $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$.
e) If $\sin \alpha=\frac{-5}{13}, \cos \beta=\frac{-7}{25}$ and α, β lies in the third quadrant find $\sin (\alpha-\beta)$.
f) Prove that: $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$.

5. Attempt any FOUR of the following:

a) Find the equation of a straight line that passes through $(3,4)$ and perpendicular to the line $3 x+2 y+5=0$.
b) Find the equation of the straight line which passes through the point of intersection of the lines $2 x+3 y=13,5 x-y=7$ and perpendicular to the line $2 x-5 y+9=0$.
c) Find the length of perpendicular from the point $(3,4)$ to the line $3 x+4 y-5=0$.
d) Find perpendicular distance between the parallel lines $5 x-12 y+1=0$ and $10 x-24 y-1=0$.
e) Find the equation of perpendicular bisector of the joint of A ($-2,3$) and $\mathrm{B}(8,-1)$.
f) Prove that: $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$.
6. Attempt any FOUR of the following:
a) Find the mean deviation from mean of the following distribution.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	05	08	15	16	06

b) Calculate standard deviation of the following frequency distribution:

Weekly Expenditure below Rs.	5	10	15	20	25
No. of students	6	16	28	38	46

c) The two sets of observations are given below:

Set I Set II
$\overline{\mathrm{X}}=82.5 \quad \overline{\mathrm{X}}=48.75$
$\sigma=7.3 \quad \sigma=8.35$
Which of two sets is more consistent ?
d) If $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right]$ Prove that $A^{2}-3 A=2 I$

Where I is unit matrix of order 2.
e) Solve by matrix method the set of equations.
$2 x+y=3, \quad 2 y+3 z=4, \quad 2 x+2 z=8$.
f) Find various for the following data:

CI	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
$f \mathrm{i}$	3	5	9	15	20	16	10	2

17104

13141

3 Hours / 100 Marks

