17104

13141 3 Hours / 100 Marks Seat No.

Instructions - (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.

20

1. Attempt any <u>TEN</u> of the following:

a) Find x if
$$\begin{vmatrix} 0 & 7 & -2 \\ 11 & x & 10 \\ 4 & 8 & 1 \end{vmatrix} = 0$$

 $\begin{bmatrix} 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 7 \end{bmatrix}$

b) If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
 $B = \begin{bmatrix} 3 & 7 \\ 1 & 9 \end{bmatrix}$ Find $2A + 3B$.

c) If
$$A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$$
 Find A^2 .

17104

Marks

d) If
$$A = \begin{bmatrix} 6 & 5 \\ 2 & 1 \end{bmatrix}$$
 Find Adj. A.

e) Resolve into partial fraction $\frac{2x}{x^2 + x - 2}$

- f) Prove that $\csc^2 \theta \cos^2 \theta \cdot \csc^2 \theta = 1$
- g) If $\cos A = 0.4$ Find the value of $\cos 3A$.

h) If
$$\sin \theta = \frac{15}{17}$$
 where θ lies in II quardrant.

Find the value of $\tan \theta$.

- i) If $\tan^{-1}(1) + \tan^{-1}(x) = 0$ Find the value of x.
- j) Find intercepts of a line 2x + 3y = 6 an co-ordinates axes.
- k) Find the acute angle between the lines whose slopes are $\sqrt{3}$ and $\frac{1}{\sqrt{3}}$.

l) Find

- i) Range
- ii) Co-efficient of range of the following data:50, 90, 120, 40, 180, 200, 80.

Marks

16

2. Attempt any <u>FOUR</u> of the following:

a) Solve the following equations by using Cramer's rule.

$$x + y + z - 6 = 0$$
, $2x + y - 2z + 2 = 0$, $x + y - 3z + 6 = 0$

- b) If $A = \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ verify that $(A \cdot B)^{T} = B^{T} \cdot A^{T}$.
- c) Find inverse of matrix by adjoint method.

If
$$A = \begin{bmatrix} 2 & -1 & -3 \\ 3 & -4 & -2 \\ 5 & 2 & 4 \end{bmatrix}$$

d) If I is unit matrix of order
$$3 \times 3$$
 and $A = \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix}$

Find $A^2 - 3A + I$.

- e) Resolve into partial fraction: $\frac{x^2+1}{x^3+1}$.
- f) Resolve into partial fraction.

$$\frac{x^2 - 2x + 7}{(x+1)(x-1)^2}$$

Marks

3. Attempt any <u>FOUR</u> of the following:

a) Prove that:
$$\sqrt{\frac{1-\cos A}{1+\cos A}} = \operatorname{cosec} A - \cot A$$
.

b) Prove that:
$$\frac{\sec 4A - 1}{\sec 2A - 1} = \frac{\tan 4A}{\tan A}$$
.

c) Prove that:

$$\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = (\cos A - \sin A \cdot \tan 3A).$$

- d) Prove that: $\cos(A + B) = \cos A \cos B \sin A \sin B$.
- e) In $\triangle ABC$ prove that:

$$\cos A + \cos B - \cos C = -1 + 4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$$

f) Show that:
$$\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{27}{11}\right).$$

4. Attempt any <u>FOUR</u> of the following:

a) Show that:
$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} = 2 \operatorname{cosec} A$$
.

b) Prove that:
$$\frac{1 - \tan 2\theta \tan \theta}{1 + \tan 2\theta \tan \theta} = \frac{\cos 3\theta}{\cos \theta}$$
.

c) Prove that:
$$\frac{\sin 7x + \sin x}{\cos 5x - \cos 3x} = \sin 2x - \cos 2x \cot x.$$

d) Prove that:
$$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$$
.

16

16

-7 and α β lies in the the

e) If
$$\sin \alpha = \frac{-5}{13}$$
, $\cos \beta = \frac{-7}{25}$ and α, β lies in the third quadrant find $\sin (\alpha - \beta)$.

f) Prove that:
$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$$
.

5. Attempt any <u>FOUR</u> of the following:

17104

- a) Find the equation of a straight line that passes through (3, 4) and perpendicular to the line 3x + 2y + 5 = 0.
- b) Find the equation of the straight line which passes through the point of intersection of the lines 2x + 3y = 13, 5x y = 7 and perpendicular to the line 2x 5y + 9 = 0.
- c) Find the length of perpendicular from the point (3, 4) to the line 3x + 4y 5 = 0.
- d) Find perpendicular distance between the parallel lines 5x 12y + 1 = 0 and 10x 24y 1 = 0.
- e) Find the equation of perpendicular bisector of the joint of A (-2, 3) and B (8, -1).
- f) Prove that: $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$.

6. Attempt any <u>FOUR</u> of the following:

a) Find the mean deviation from mean of the following distribution.

Marks	0–10	10–20	20–30	30–40	40–50
No. of students	05	08	15	16	06

[5]

Marks

16

16

P.T.O.

Marks

b) Calculate standard deviation of the following frequency distribution:

Weekly Expenditure below Rs.	5	10	15	20	25
No. of students	6	16	28	38	46

c) The two sets of observations are given below:

Set I Set II $\overline{X} = 82.5$ $\overline{X} = 48.75$ $\sigma = 7.3$ $\sigma = 8.35$

Which of two sets is more consistent ?

d) If A =
$$\begin{bmatrix} 2 & 4 \\ & \\ 1 & 1 \end{bmatrix}$$
 Prove that A² - 3A = 2I

Where I is unit matrix of order 2.

e) Solve by matrix method the set of equations.

2x + y = 3, 2y + 3z = 4, 2x + 2z = 8.

f) Find various for the following data:

CI	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40
fi	3	5	9	15	20	16	10	2

3 Hours / 100 Marks